
LANGUAGE AND NUMERICAL STRUCTURES

Human beings have been entering numbers in computing 
machines through 10 digits since Dorr Eugene Felt 
invented the fi rst successful keyboard operated adding 
machine, the Comptometer, back in 1885.  The original 
mechanical keyboards had a matrix of 10 rows where 
each row corresponded to a digit, and each column 
corresponded to the position of that digit in the decimal 
number.  A signifi cant improvement occurred 90 years ago in 1914, when 
Oscar J. Sundstrand of Rockford, Illinois, introduced the mechanical ten-key 
pad based on a 3x3 matrix of digits plus a zero key located under the matrix.  

In the late 1960’s, Ted Hoff, Stan Mazor and Federico Faggin, from Intel co-
invented the microprocessor, and the world was never the same.  Electronic 
calculators, micro-computers and every kind of electronic device have 
reshaped the world in ways that not even the most talented visionaries of 
the science were able to predict.  Yet, nothing has changed in the way we 
enter numbers, and Sunstrand’s ten-key pad design is still used today.

Numbers have always been entered as decimal numbers 
represented by a sequence of digits. However, our mind does not conceive a 
number as a sequence of digits; instead it conceives a number as an object 
composed of small quantities (such as thirteen or twenty) supported by 
names given to some powers of 10 (such as hundred, thousand, or million) 
that work as numerical structures. For example, we are living in the year “two 
thousand four,” not in the year “two zero zero four.”  

The object of this document is to present an analysis of the mathematical 
rules that defi ne the relationship between the verbal expression of a number and its decimal 
representation, and show an alternative way to represent numbers by using combinations of 
digits and decimal structure symbols, named verbal numerals.  Finally, this document will show 
the advantages of verbal numerals and how they can be used to enhance the ergonomics of 
the number-input operations applied to electronic devices such as calculators, computers, and 
digitizer devices.

LANGUAGE AND NUMERICAL STRUCTURES
By James Redin                                                                

“Numbers are free creations of the human mind that serve as a medium for the 
easier and clearer understanding of the diversity of thought.”

Julius Wilhelm Richard, German mathematician (1831-1916)
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Numbers and Language Rules

When a number is expressed orally, several rules, which are 

language dependent, must be applied in order to determine 

the proper way to express the number.

The following analysis will defi ne the common rules that 

determine the verbal expression of numbers in different 

languages, and fi nd an alternative way to represent this 

decimal number that is different from its conventional decimal 

representation.

Small Numbers

In most languages, special names and/or special naming 

conventions are applied to numbers smaller than 100.  For 

the purpose of this analysis these numbers will be referred to 

as “small numbers.”  In general, the smaller the number, the “small numbers.”  In general, the smaller the number, the “small numbers.”

more specifi c is its name.  In English, for example, numbers 

ranging from 0 to 12 have single names which do not follow 

any rule at all; each name is unique and shows no relationship 

with the others.  Numbers ranging from 13 to 19 also have 

single names, but this time the name is formed by combining 

a root taken from the names assigned to numbers 3 to 9 

with a suffi x “teen.”  A similar approach is used to name 

the remaining multiples of ten, 20 to 90, by using the suffi x 

“ty.”  Numbers starting with 21 up to 99, not included in the 

previous set, have a composite name made up from the name 

of the immediate lower multiple of 10 plus the unique name 

assigned to the number that corresponds to the remaining 

number of units; as an example, the number 37 is expressed 

as “Thirty-seven.”  

In Spanish a similar scheme is applied to numbers from 0 

to 15, and multiples of 10 from 20 to 90, while every other 

number in the range has a composite name constructed as 

described above for English numbers larger than 20. As an 

example, the number 17 is expressed as “Diecisiete,” which is 

a concatenation of “Diez (ten) y siete (seven).”

It is interesting to notice the way some small numbers are 

constructed in French.  For example, the numbers 70 and 80, 

instead of being assigned single names as they are in other 

languages, are expressed with the composite names “Soixant 

(sixty) Dix (ten)” and “Quatre (four) Vingts (twenty)”, which 

translated literally into English would mean “Sixty Ten” and 

“Four Twenties.”

In Japanese , the number 10, is named “juu” and the names 

of the multiples of ten from 20 to 90, instead of having special 

names as in the Western languages, are a combination of the 

initial digit and the word “juu”: “ni (two) juu (ten)” for twenty, 

“san (three) juu (ten)” for thirty, “yon (four) juu (ten)” for forty, 

and so on.  Notice that twenty-four is named “ni (two) juu (ten) 

yon (four).”  In several Asian languages, the small numbers 

are expressed in a more consistent way than in Western 

languages.

It follows from the discussion above, that except for some 

Asian languages, small numbers have no general naming 

conventions, and the way they are expressed greatly depends 

on the language applied.

Numerical structures

In every language, special non-composite names have been 

assigned to certain powers of ten that can be used for 

structuring or building up the names of larger numbers.  For 

the purpose of this analysis, these powers of ten will be 

named “numerical structures.”  Notice that not all powers 

of ten can be considered numerical structures because 

their name, as in the case of “hundred thousand,” has been 

derived from the names of other powers of ten that qualify as 

numerical structures.

In Western languages, the most common numerical structures 

are 100, 1,000 and 1,000,000.  For example, in English, these 

numerical structures are named “Hundred,” “Thousand” and 

“Million;” in Spanish “Cien,” “Mil,” and “Millón;” and “Cent,” 

“Mille,” and “Million” in French. These are the only numerical 

structures that remain consistent across major Western 

languages.  

Larger powers of ten have also been assigned single names, 

but they do not always have consistent meanings.  The most 

typical case is the numerical structure “Billion” which in the 

American system of numeration (originally invented by the 

French and also used in Canada) means one thousand millions 

(1,000,000,000), while in the British system of numeration 

(used in most Germanic and Romance languages) it means 

one million millions (1,000,000,000,000).  By the same token, 

the numerical structure “Trillion” in United States represents a 
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unit followed by twelve zeroes, while in England it represents 

a unit followed by eighteen zeroes.  In general, the names 

“Billion,” “Trillion”, “Quadrillion,” “Quintillion,” “Sextillion,” 

“Septillion” and “Octillion” have been defi ned, both in the 

American system and in the British system, but have different 

meanings. In the American system each denomination is a 

thousand times the preceding, while in the British system 

each denomination is a million times the preceding.  There 

are also names assigned for larger structures, but the rule 

is still the same.  The largest numerical structure assigned a 

name in these systems is the “Centillon” that represents 10303

and 10600 in the American system and in the British system, 

respectively.

According to the Japanese JIS Standards, the following 

powers of ten have been defi ned as number components 

and therefore qualify as numerical structures: “juu” for 10, 

“hyaku” for 100, “sen” for 1,000, “man” for 10,000, “oku” 

for 108,  “chou” for 1012, “kei” for 1016, “gai” for 1020, “jo” for 

1024, “jou” for 1028, “kou” for 1032 “kan” for 1036, “sei” for 

1040, “sai” for 1044 and “goku” for 1048.  Equivalent names are 

used in other Asian languages such as Chinese and Korean for 

some of these powers of ten.  Notice that in this numeration 

system, for numerical structures larger than 10,000, each 

denomination is ten thousand times the preceding.

Table 1 shows the different names assigned in several 

languages to the main numerical structures. 

We can see that major languages have defi ned a set of single 

names for some powers of ten (numerical structures), a set 

of single names for the ten digits, and in some cases, a set of 

single names for some small numbers other than digits.  The 

remaining numbers are a combination of these single names 

according to certain structural rules.

Number Name Parameters

For any number, the largest power of ten identifi ed as a 

numerical structure, that is smaller than the number will be 

defi ned as the “Order” of the number, unless the number “Order” of the number, unless the number “Order”

is smaller than the smallest numerical structure available, in 

which case the Order will be considered to be 1.  The Order of 

the number is therefore the value 1 or a numerical structure 

that can be used to build up the number by using the following 

arithmetic expression:

number = int(number/Order) x Order + rem(number/Order)

where int(number/Order) represents the result of applying an int(number/Order) represents the result of applying an int(number/Order)

integer division of the number by its Order, and rem(number/

Order) represents the remainder of the same operation.  For Order) represents the remainder of the same operation.  For Order

the purpose of this analysis, these values will be defi ned as 

the “Factor” of and the “Factor” of and the “Factor” “Module” of the number, respectively.  “Module” of the number, respectively.  “Module”

Therefore, above expression can be written as follows:

number = Factor x Order + Module

Notice that when the Order is 1 the Module is always zero.
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Numerical                         English
Structure                 US                     UK                  Spanish               French                Japanese

101                            -                         -                      -                            -                          Juu
102                            Hundred            Hundred         Cien                      Cent                    Hyaku
103                            Thousand           Thousand       Mil                        Mille                    Sen
104                            -                          -                     -                            -                          Man
106                            Million               Million            Millon                   Million                  -
108                            -                         -                      -                            -                          Oku  
109                           Billion                  -                      -                           Milliard                 -
1012                           Trillion                Billion             Billon                    Billion                  Chou
1015                          Quadrillion          Billion             -                                                        -
1016                           -                         -                      -                            -                          Kei
1018                          Quintillion           Trillion             Trillion                   Trillion                   - 
1020                           -                         -                      -                            -                          Gai

TABLE 1. Names of Numerical Structures in Several Languages 
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Number           Factor           Order            Module

100,000            100               1,000             0
350                   3                   100            50
99                     99                 1                     0
0                       0                   1                     0
2,457,128          2                   1,000,000      457,128
457,128             457               1,000             128
352,457,128      352               1,000,000      457,128

It will be shown later that the values of the Order, Factor and 

Module are closely related with the verbal expression of the 

number; for this reason, they will be called the “number name 

parameters.”

Table 2- shows some illustration examples of above defi ned 

concepts when the numerical structures 100, 1,000 and 

1,000,000 are used. 

Table 3- shows the same examples when numerical structures 

10, 100, 1,000 and 10,000 are used (as in the Japanese 

language.)

Verbal Numerical Expressions.

As shown in the examples of the previous section, in some 

cases the Factor and/or the Module themselves can be large 

numbers.  In these cases, the original expression can be 

expanded recursively until all the Factors and Modules of the 

expression are small numbers as described by the following 

algorithm:

(1)  Find the Order, Factor and Module of the number.

(2)  If the Factor is a large number, apply recursively steps 

      (1) to (5) to obtain the Factor expression and then 

       enclose the factor expression within parentheses,  

       otherwise use the Factor as the Factor expression.

(3)  If the Module is a large number, apply recursively 

       steps (1) to (5) to obtain the Module expression, 

       otherwise use the Module as the Module expression.

(4)  If the Order is greater than 1, append “Factor 

      expression x Order” to the arithmetic expression that       expression x Order” to the arithmetic expression that       expression x Order”

      represents the number; otherwise, use the Factor as 

      such expression.

(5)  If the module is greater than 0, append “+ Module 

      expression” to the arithmetic expression that  represents       expression” to the arithmetic expression that  represents       expression”

      the number.

An example, the application of above algorithm to number 

457,128 by using numerical structures 100 and 1,000 yields the 

following arithmetic expressions:

          Expand the number:

          457 x 1,000 + 128 

         Expand the Factor:

         (4 x 100 + 57) x 1,000 + 128

         Expand the Term:

         (4 x 100 + 57) x 1,000 + 1 x 100 + 28.

Now, it is interesting to realize that the expressions obtained 

by the application of the above procedure are consistent with 

the verbal expression of the number.  In fact, notice that the 

name of the number can be easily obtained just by arranging 

the names of the numbers and numerical structures of the 

expression in the same order as they appear in the expression 

without paying attention to the arithmetic symbols used in the 

expression.  For example, above expression can be used to 

Number           Factor         Order               Module

100,000            10                1,0000              0
350                    3                 100              50
99                      99               1                       0
0                        0                 1                       0
2,457,128          245              10,000              7,128
457,128             45                10,000              7,128
352,457,128      3                  100,000,000     52,457,128

TABLE 2. English Number Parameters TABLE 3. Japanese Number Parameters
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obtain the name of the number 457,128 by using exclusively 

the names of the small numbers and numerical structures as 

follows:

    (4  x   100   +     57)    x   1,000  + (1 x  100  +   28)

four hundred fi fty-seven thousand one hundred twenty-eight.

The same procedure with minor adaptations can be used in 

languages other than English.  For example, In Japanese, the 

expression becomes:

(4 x 10 + 5) x 10,000 +(7 x 1000 +(1 x 100 +(2 x 10 + 8)))

yon  juu  go        man    nana    sen      hyaku  ni    juu  hachi.

Because of this correlation between the algorithm results 

and the verbal expression of a number, expressions obtained 

by applying the algorithm described above will be referred to 

as “verbal numerical expressions,” and the algorithm will be “verbal numerical expressions,” and the algorithm will be “verbal numerical expressions,”

called the “verbal expression algorithm.”

Notice that all the components of a verbal numerical 

expression must follow the format:  “Factor x Order + 

Module;” if any component of the expression is permuted, Module;” if any component of the expression is permuted, Module;”

the new expression, according with the commutative law of 

numbers, will still represent the same number, however it will 

no longer be consistent with its verbal notation.  For example, 

the following expression:

1,000 x (4 x 100 + 57) + 1 x 100 + 28

still represents the number from the example, however, it 

is no longer consistent with its verbal notation.  Notice that 

“thousand four hundred fi fty-seven one hundred twenty-eight” 

is not the name of a valid number.

Properties of Verbal Numerical Expressions

By observing the nature of verbal numerical expressions, the 

following properties can be found:

•  The Module is always smaller than the Order.

•  Whenever the Order is smaller than the largest numerical 

   structure available in the set of numerical structures used 

   to construct a verbal numerical expression, the Factor is 

   smaller than the Order.

•  Except for the representation of zero, either the Factor or 

   the Module component is always greater than zero.

•  Order components are always greater than 1.

The above properties may be used to determine if a given 

expression is a valid verbal numerical expression.

Verbal Numerical Expressions and Verbal 
Numerals

In the previous section it was shown that the name of a 

number is actually the representation of a verbal numerical 

expression.  Another way to represent a verbal numerical 

expression is by assigning symbols to the numerical structures 

(i.e.: “H,” “T” and “M” for Hundred, Thousand and Million, 

respectively) and combining them with the small numbers 

used in the verbal numerical expression in a mode similar to 

the way the name of the number is constructed orally.

As an illustration example, the application of the verbal 

expression algorithm to the number 35,178,971 will yield the 

following intermediate and fi nal verbal numerical expressions:

   35 x 1,000,000 + 178,971

   35 x 1,000,000 + 178 x 1,000 + 971

   35 x 1,000,000 + (1 x 100 + 78) x 1,000 + 971

   35 x 1,000,000 + (1 x 100 + 78) x 1,000 + 9 x 100 + 71.

By replacing the numerical structures with the corresponding 

symbols and removing the parentheses and arithmetic 

operators, these expressions can also be expressed 

symbolically as follows:

   35M178971

   35M178T971

   35M1H78T971

   35M1H78T9H71.

Since a verbal numerical expression represents a number, the 

symbolic representation of a verbal numerical expression will 

also represent a number.  In general, we use the word numeral 

to mean the symbolic representation of a number; therefore 

the symbolic representation of a verbal numerical expression 

in the way described above is a numeral. For the purpose of 

this analysis, this symbolic representation of a number will be 
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called “verbal numeral.”

Some languages, like Spanish, omit the pronunciation of the 

Factor when it is equal to 1.  As an illustration example, the 

number “One thousand one hundred” (1T1H) is expressed in “One thousand one hundred” (1T1H) is expressed in “One thousand one hundred”

Spanish as “Mil cien” (TH).  This is a convenient feature to be “Mil cien” (TH).  This is a convenient feature to be “Mil cien”

included in a verbal numeral because it reduces the number of 

components required by some verbal numerals, for example, 

the number illustrated above could also be represented as:  

35MH78T971.

It is interesting to notice that in Japanese and Chinese, digits 

and numerical structures have single Kanji symbols, and a 

number is already written as a verbal numeral instead of a 

sequence of digits. For example the number 1,105 with verbal 

numeral TH5 is pronounced in Japanese as sen-hyaku-go (for sen-hyaku-go (for sen-hyaku-go

thousand-hundred-fi ve), and in Kanji characters is written as: 

corresponding to “sen,” “hyaku” and “go.”

Conversion of Numbers into Verbal Numerals

Since a verbal numeral is the symbolic representation of a 

verbal numerical expression, the procedure used to obtain the 

verbal numeral of a number should be similar to the verbal 

expression algorithm.

The following is an algorithm that can be used to convert a 

number into a verbal numeral:

(1)  Find the Order, Factor and Module of the number.

(2)  If the Factor is a large number, apply recursively  

       steps (1) to (4) to obtain the verbal numeral of the 

       Factor, otherwise use the decimal representation of the 

       Factor as the verbal numeral of the Factor. 

(3)  If the Module is a large number, apply recursively 

       steps (1) to (4) to obtain the verbal numeral of the 

       Module, otherwise use the decimal representation of 

       the Module as its verbal numeral representation.

(4) Obtain the verbal numeral of the number by appending 

     to the verbal numeral of the Factor the symbol of 

     the Order and the verbal numeral of the Module, in 

     that order.

Due to the similarity of steps (2) and (3), the procedure can 

be simplifi ed to use only one single call to the recursive 

procedure by subtracting the product Factor X Order from the Factor X Order from the Factor X Order

number and then repeating the procedures until the result 

is zero.  A fl ow-chart showing the simplifi ed version of this 

algorithm is shown in Fig. 1.

There are many applications where it is desirable to build the 

full-word name of a number.  Examples of these applications 

are programs and routines used to print the words for dollar 

amount in a check.  A procedure can easily be developed 

where the number is converted into a verbal numeral by 

using the algorithm described in this section, and then the 

verbal numeral can be scanned from left to right replacing 

the contiguous groups of digits with the name of the small 

number that they represent, and replacing the numerical 

structure symbols with their names.  

Conversion of Verbal Numerals into Numbers

The verbal expression algorithm can also be used to develop 

an algorithm to obtain the decimal value of a number that is 

represented by a verbal numeral.  Basically, this procedure is 

similar to the verbal expression algorithm, except that this time 

the expression components are actually computed and added 

to the number, and the Order is extracted directly from the 

verbal numeral rather than computed from the number.  This 

recursive algorithm may be summarized as follows:

(1) Find the Order symbol of the verbal numeral by 

     locating the symbol of the largest numerical structure 

     contained in the verbal numeral; if found, the Order 

     is the absolute value of the Order symbol; otherwise the 

     Order is 1.

(2) Get the value of the Factor by using the string segment 

     of the verbal numeral located at the left side of the   

     Order symbol; if no Order symbol is found assign the 

     value 1 to the Order and use the value represented by 

     the digits in the string segment as the value of the 

     Factor.  If no string segment is available, the value of 
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     the Factor is 1.  If the string segment contains at least 

     one numerical structure symbol, apply recursively steps 

     (1) to (4) on this string segment to obtain the value of 

     the Factor. 

(3) Get the value of the Module by using the string 

    segment of the verbal numeral located at the right side 

    of the Order symbol; if no Order symbol is found, use 

    the value represented by the digits in the string 

    segment as the value of the Module; if no string 

    segment is available, assign the number zero to the 

    Module.  If the string segment contains at least one 

    numerical structure symbol, apply recursively steps 

    (1) to (4) on the string segment to obtain the value of 

    the Module. 

(4) Determine the value of the number by applying the 

    following expression:  Factor x Order + Module.

Since the logic to convert the Module is similar to the one 

used to convert the Factor, it is possible to simplify the logic to 

use only one single call to the recursive procedure as shown in 

the fl ow chart of Fig. 2.

The algorithm shown in this section can be implemented in 

the logic of a numerical data-entry device such as a calculator, 

a computer keyboard or a touch sensitive device in order 

to accept numbers entered as verbal numerals.  A similar 

procedure can also be adapted to enter numbers in voice and 

gesture recognition systems.

Support for Combined Numerical Structures

As mentioned before, in most Western languages the only 

common numerical structures are “hundred,” “thousand” 

and “million.”  This can make it impractical to include keys for 

Fig. 1 – Conversion from Decimal Number to Verbal Numeral Fig. 2 – Conversion from Verbal Numeral to Decimal Number 
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larger numerical structures such as “billion” or “trillion” in a 

keyboard.  In these situations, the algorithms described above 

can easily be modifi ed to accept or recognize “combined 

numerical structures.”  For this to work, a combined numerical numerical structures.”  For this to work, a combined numerical numerical structures.”

structure must be defi ned as a sequence of one or more 

consecutive numerical structures where the value of each 

numerical structure is equal to or larger than the value of its 

preceding numerical structure.

As examples of applying this concept, the following numerical 

structures may be defi ned by using the “hundred (H),” 

“thousand (T)” and “million (M)” numerical structures:

HH   Japanese “man” (10,000)

HT   Japanese “oku” (10^8)

TM   American “billion” or French “milliard” (10^9)

MM  British “Billion” or Japanese “chou” (10^12).

As another example, the British version of the number 

“two billion three hundred million” may be entered with the 

following verbal numeral: 2MM3HM.

The algorithm should identify these types of sequences within 

the verbal numeral and consider them as single numerical 

structures.

Validation Rules

As mentioned before, the oral expression of a number must 

follow certain rules, for example, the number “Four hundred 

and thirty seven hundred” does not exist (although the words 

would be intended to represent the number 43700.)  By the 

same token not every combination of digits and numerical 

structure symbols should yield a valid verbal numeral.  The 

following are the rules that can be used to validate a verbal 

numeral:

•  The Factor or the Module segment of a verbal numeral 

   cannot have a leading zero.

•  The Factor of a verbal numeral cannot represent a 

   number larger than the Order of the verbal numeral.

•  The Module of a verbal numeral cannot represent a 

   number equal or larger than the Order of the verbal 

   numeral.

The following are examples on of invalid verbal numerals:

  4H37H   (Module 37H is larger than Order 100)

  437H      (Factor 437 is larger than Order 100)

  3T025    (Module 025 has a leading zero)

  3T1000  (Module 1000 is equal to Order 1000)

  4TTHM (Module HM is larger than Order TT).

These rules can easily be implemented as part of the algorithm 

described in Fig. 1 in order to validate a verbal numeral entered 

by a user in a device designed to accept verbal numerals as a 

way to enter numeric quantities.

Advantages of Verbal Numerals

One obvious advantage of verbal numerals is its consistency 

with the way the human mind conceives and orally expresses 

the number.    This allows for a more natural interface when 

entering numbers that can be used in many input devices from 

keyboards to voice recognition systems.  Verbal numerals may  

also reduce the number of data entry errors as the operator 

would not have to translate an orally expressed number to 

its decimal sequence.

By using combined numerical structures, verbal numerals 

can be used to represent very large numbers, even if special 

symbols have not been assigned for very large numerical 

structures as in the following example:

        245,000,000,072      245MM72

In many instances verbal numerals require fewer number of 

symbols than decimal numbers.  Here are several examples:

                    3,000,005      3M5

                       350,000      3H50T or 350T

                    2,000,305      2M3H5 or 2M305

                    1,001,000      1M1T  or MT

             1,000,000,000      1TM  or TM

             1,000,000,100      1TM1H or TMH 

A large number usually may be represented by several 

alternative verbal numerals; this provides fl exibility not 

available with decimal numbers.  For example, following 

8



LANGUAGE AND NUMERICAL STRUCTURES

Notice that while the decimal number changes substantially 

in each intermediate step of the number, the verbal numeral 

does not change except for the addition of the new 

component to the previous numeral.

Verbal numerals can easily be adapted as input means in 

electronic devices, with the additional advantage that they can 

coexist with the traditional number-entry input means.

Conclusions

The way we write decimal numbers is not the only way to 

represent numbers in decimal mode.  Numbers can also be 

represented as verbal numerals that, in addition to having the 

fl exibility to represent the same number in different alternative 

ways, are consistent with the way numbers are conceived and 

expressed verbally.

The technological limitations that caused decimal numbers 

to be entered in mechanical devices as a sequence of digits 

are a thing of the past. We are no longer forced to convert a 

number into this cold sequence of digits before entering it; the 

device can do that for us. Verbal numerals can now be used 

to increase the ergonomics of number entry procedures in 

electronic devices, without having to replace the usage of the 

traditional decimal numbers.

representations of the number 205,001,048 are equally valid:

      2H5M1T48

      2H5MT48

      205MT48

      205M2048

Another advantage of verbal numerals is its capability to grow 

gradually as the number is being pronounced orally.  This 

property does not exist in the corresponding decimal numbers.  

For example, in the construction of the number “Five Million 

Three Hundred Thousand Six” the following intermediate Three Hundred Thousand Six” the following intermediate Three Hundred Thousand Six”

numerals are involved: 

  Number           Decimal                 Verbal

  Name              Number                 Numeral

  Five...                5                            5

  million...            5,000,000              5M

  three...              5,000,003               5M3

  hundred...         5,000,300               5M3H

  thousand...        5,300,000              5M3HT

  six                     5,300,006               5M3HT6
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Fig. 3 – Possible implementation of verbal numerals on a keyboard


