
LANGUAGE AND NUMERICAL STRUCTURES

Human beings have been entering numbers in computing
machines through 10 digits since Dorr Eugene Felt
invented the fi rst successful keyboard operated adding
machine, the Comptometer, back in 1885. The original
mechanical keyboards had a matrix of 10 rows where
each row corresponded to a digit, and each column
corresponded to the position of that digit in the decimal
number. A signifi cant improvement occurred 90 years ago in 1914, when
Oscar J. Sundstrand of Rockford, Illinois, introduced the mechanical ten-key
pad based on a 3x3 matrix of digits plus a zero key located under the matrix.

In the late 1960’s, Ted Hoff, Stan Mazor and Federico Faggin, from Intel co-
invented the microprocessor, and the world was never the same. Electronic
calculators, micro-computers and every kind of electronic device have
reshaped the world in ways that not even the most talented visionaries of
the science were able to predict. Yet, nothing has changed in the way we
enter numbers, and Sunstrand’s ten-key pad design is still used today.

Numbers have always been entered as decimal numbers
represented by a sequence of digits. However, our mind does not conceive a
number as a sequence of digits; instead it conceives a number as an object
composed of small quantities (such as thirteen or twenty) supported by
names given to some powers of 10 (such as hundred, thousand, or million)
that work as numerical structures. For example, we are living in the year “two
thousand four,” not in the year “two zero zero four.”

The object of this document is to present an analysis of the mathematical
rules that defi ne the relationship between the verbal expression of a number and its decimal
representation, and show an alternative way to represent numbers by using combinations of
digits and decimal structure symbols, named verbal numerals. Finally, this document will show
the advantages of verbal numerals and how they can be used to enhance the ergonomics of
the number-input operations applied to electronic devices such as calculators, computers, and
digitizer devices.

LANGUAGE AND NUMERICAL STRUCTURES
By James Redin

“Numbers are free creations of the human mind that serve as a medium for the
easier and clearer understanding of the diversity of thought.”

Julius Wilhelm Richard, German mathematician (1831-1916)

TI-1795 SV (2004)

1

The Comptograph (1889)
Sundstrand’s ten-key pad (1914)

LANGUAGE AND NUMERICAL STRUCTURES

Numbers and Language Rules

When a number is expressed orally, several rules, which are

language dependent, must be applied in order to determine

the proper way to express the number.

The following analysis will defi ne the common rules that

determine the verbal expression of numbers in different

languages, and fi nd an alternative way to represent this

decimal number that is different from its conventional decimal

representation.

Small Numbers

In most languages, special names and/or special naming

conventions are applied to numbers smaller than 100. For

the purpose of this analysis these numbers will be referred to

as “small numbers.” In general, the smaller the number, the “small numbers.” In general, the smaller the number, the “small numbers.”

more specifi c is its name. In English, for example, numbers

ranging from 0 to 12 have single names which do not follow

any rule at all; each name is unique and shows no relationship

with the others. Numbers ranging from 13 to 19 also have

single names, but this time the name is formed by combining

a root taken from the names assigned to numbers 3 to 9

with a suffi x “teen.” A similar approach is used to name

the remaining multiples of ten, 20 to 90, by using the suffi x

“ty.” Numbers starting with 21 up to 99, not included in the

previous set, have a composite name made up from the name

of the immediate lower multiple of 10 plus the unique name

assigned to the number that corresponds to the remaining

number of units; as an example, the number 37 is expressed

as “Thirty-seven.”

In Spanish a similar scheme is applied to numbers from 0

to 15, and multiples of 10 from 20 to 90, while every other

number in the range has a composite name constructed as

described above for English numbers larger than 20. As an

example, the number 17 is expressed as “Diecisiete,” which is

a concatenation of “Diez (ten) y siete (seven).”

It is interesting to notice the way some small numbers are

constructed in French. For example, the numbers 70 and 80,

instead of being assigned single names as they are in other

languages, are expressed with the composite names “Soixant

(sixty) Dix (ten)” and “Quatre (four) Vingts (twenty)”, which

translated literally into English would mean “Sixty Ten” and

“Four Twenties.”

In Japanese , the number 10, is named “juu” and the names

of the multiples of ten from 20 to 90, instead of having special

names as in the Western languages, are a combination of the

initial digit and the word “juu”: “ni (two) juu (ten)” for twenty,

“san (three) juu (ten)” for thirty, “yon (four) juu (ten)” for forty,

and so on. Notice that twenty-four is named “ni (two) juu (ten)

yon (four).” In several Asian languages, the small numbers

are expressed in a more consistent way than in Western

languages.

It follows from the discussion above, that except for some

Asian languages, small numbers have no general naming

conventions, and the way they are expressed greatly depends

on the language applied.

Numerical structures

In every language, special non-composite names have been

assigned to certain powers of ten that can be used for

structuring or building up the names of larger numbers. For

the purpose of this analysis, these powers of ten will be

named “numerical structures.” Notice that not all powers

of ten can be considered numerical structures because

their name, as in the case of “hundred thousand,” has been

derived from the names of other powers of ten that qualify as

numerical structures.

In Western languages, the most common numerical structures

are 100, 1,000 and 1,000,000. For example, in English, these

numerical structures are named “Hundred,” “Thousand” and

“Million;” in Spanish “Cien,” “Mil,” and “Millón;” and “Cent,”

“Mille,” and “Million” in French. These are the only numerical

structures that remain consistent across major Western

languages.

Larger powers of ten have also been assigned single names,

but they do not always have consistent meanings. The most

typical case is the numerical structure “Billion” which in the

American system of numeration (originally invented by the

French and also used in Canada) means one thousand millions

(1,000,000,000), while in the British system of numeration

(used in most Germanic and Romance languages) it means

one million millions (1,000,000,000,000). By the same token,

the numerical structure “Trillion” in United States represents a

2

LANGUAGE AND NUMERICAL STRUCTURES

unit followed by twelve zeroes, while in England it represents

a unit followed by eighteen zeroes. In general, the names

“Billion,” “Trillion”, “Quadrillion,” “Quintillion,” “Sextillion,”

“Septillion” and “Octillion” have been defi ned, both in the

American system and in the British system, but have different

meanings. In the American system each denomination is a

thousand times the preceding, while in the British system

each denomination is a million times the preceding. There

are also names assigned for larger structures, but the rule

is still the same. The largest numerical structure assigned a

name in these systems is the “Centillon” that represents 10303

and 10600 in the American system and in the British system,

respectively.

According to the Japanese JIS Standards, the following

powers of ten have been defi ned as number components

and therefore qualify as numerical structures: “juu” for 10,

“hyaku” for 100, “sen” for 1,000, “man” for 10,000, “oku”

for 108, “chou” for 1012, “kei” for 1016, “gai” for 1020, “jo” for

1024, “jou” for 1028, “kou” for 1032 “kan” for 1036, “sei” for

1040, “sai” for 1044 and “goku” for 1048. Equivalent names are

used in other Asian languages such as Chinese and Korean for

some of these powers of ten. Notice that in this numeration

system, for numerical structures larger than 10,000, each

denomination is ten thousand times the preceding.

Table 1 shows the different names assigned in several

languages to the main numerical structures.

We can see that major languages have defi ned a set of single

names for some powers of ten (numerical structures), a set

of single names for the ten digits, and in some cases, a set of

single names for some small numbers other than digits. The

remaining numbers are a combination of these single names

according to certain structural rules.

Number Name Parameters

For any number, the largest power of ten identifi ed as a

numerical structure, that is smaller than the number will be

defi ned as the “Order” of the number, unless the number “Order” of the number, unless the number “Order”

is smaller than the smallest numerical structure available, in

which case the Order will be considered to be 1. The Order of

the number is therefore the value 1 or a numerical structure

that can be used to build up the number by using the following

arithmetic expression:

number = int(number/Order) x Order + rem(number/Order)

where int(number/Order) represents the result of applying an int(number/Order) represents the result of applying an int(number/Order)

integer division of the number by its Order, and rem(number/

Order) represents the remainder of the same operation. For Order) represents the remainder of the same operation. For Order

the purpose of this analysis, these values will be defi ned as

the “Factor” of and the “Factor” of and the “Factor” “Module” of the number, respectively. “Module” of the number, respectively. “Module”

Therefore, above expression can be written as follows:

number = Factor x Order + Module

Notice that when the Order is 1 the Module is always zero.

3

Numerical English
Structure US UK Spanish French Japanese

101 - - - - Juu
102 Hundred Hundred Cien Cent Hyaku
103 Thousand Thousand Mil Mille Sen
104 - - - - Man
106 Million Million Millon Million -
108 - - - - Oku
109 Billion - - Milliard -
1012 Trillion Billion Billon Billion Chou
1015 Quadrillion Billion - -
1016 - - - - Kei
1018 Quintillion Trillion Trillion Trillion -
1020 - - - - Gai

TABLE 1. Names of Numerical Structures in Several Languages

LANGUAGE AND NUMERICAL STRUCTURES

Number Factor Order Module

100,000 100 1,000 0
350 3 100 50
99 99 1 0
0 0 1 0
2,457,128 2 1,000,000 457,128
457,128 457 1,000 128
352,457,128 352 1,000,000 457,128

It will be shown later that the values of the Order, Factor and

Module are closely related with the verbal expression of the

number; for this reason, they will be called the “number name

parameters.”

Table 2- shows some illustration examples of above defi ned

concepts when the numerical structures 100, 1,000 and

1,000,000 are used.

Table 3- shows the same examples when numerical structures

10, 100, 1,000 and 10,000 are used (as in the Japanese

language.)

Verbal Numerical Expressions.

As shown in the examples of the previous section, in some

cases the Factor and/or the Module themselves can be large

numbers. In these cases, the original expression can be

expanded recursively until all the Factors and Modules of the

expression are small numbers as described by the following

algorithm:

(1) Find the Order, Factor and Module of the number.

(2) If the Factor is a large number, apply recursively steps

 (1) to (5) to obtain the Factor expression and then

 enclose the factor expression within parentheses,

 otherwise use the Factor as the Factor expression.

(3) If the Module is a large number, apply recursively

 steps (1) to (5) to obtain the Module expression,

 otherwise use the Module as the Module expression.

(4) If the Order is greater than 1, append “Factor

 expression x Order” to the arithmetic expression that expression x Order” to the arithmetic expression that expression x Order”

 represents the number; otherwise, use the Factor as

 such expression.

(5) If the module is greater than 0, append “+ Module

 expression” to the arithmetic expression that represents expression” to the arithmetic expression that represents expression”

 the number.

An example, the application of above algorithm to number

457,128 by using numerical structures 100 and 1,000 yields the

following arithmetic expressions:

 Expand the number:

 457 x 1,000 + 128

 Expand the Factor:

 (4 x 100 + 57) x 1,000 + 128

 Expand the Term:

 (4 x 100 + 57) x 1,000 + 1 x 100 + 28.

Now, it is interesting to realize that the expressions obtained

by the application of the above procedure are consistent with

the verbal expression of the number. In fact, notice that the

name of the number can be easily obtained just by arranging

the names of the numbers and numerical structures of the

expression in the same order as they appear in the expression

without paying attention to the arithmetic symbols used in the

expression. For example, above expression can be used to

Number Factor Order Module

100,000 10 1,0000 0
350 3 100 50
99 99 1 0
0 0 1 0
2,457,128 245 10,000 7,128
457,128 45 10,000 7,128
352,457,128 3 100,000,000 52,457,128

TABLE 2. English Number Parameters TABLE 3. Japanese Number Parameters

4

LANGUAGE AND NUMERICAL STRUCTURES

obtain the name of the number 457,128 by using exclusively

the names of the small numbers and numerical structures as

follows:

 (4 x 100 + 57) x 1,000 + (1 x 100 + 28)

four hundred fi fty-seven thousand one hundred twenty-eight.

The same procedure with minor adaptations can be used in

languages other than English. For example, In Japanese, the

expression becomes:

(4 x 10 + 5) x 10,000 +(7 x 1000 +(1 x 100 +(2 x 10 + 8)))

yon juu go man nana sen hyaku ni juu hachi.

Because of this correlation between the algorithm results

and the verbal expression of a number, expressions obtained

by applying the algorithm described above will be referred to

as “verbal numerical expressions,” and the algorithm will be “verbal numerical expressions,” and the algorithm will be “verbal numerical expressions,”

called the “verbal expression algorithm.”

Notice that all the components of a verbal numerical

expression must follow the format: “Factor x Order +

Module;” if any component of the expression is permuted, Module;” if any component of the expression is permuted, Module;”

the new expression, according with the commutative law of

numbers, will still represent the same number, however it will

no longer be consistent with its verbal notation. For example,

the following expression:

1,000 x (4 x 100 + 57) + 1 x 100 + 28

still represents the number from the example, however, it

is no longer consistent with its verbal notation. Notice that

“thousand four hundred fi fty-seven one hundred twenty-eight”

is not the name of a valid number.

Properties of Verbal Numerical Expressions

By observing the nature of verbal numerical expressions, the

following properties can be found:

• The Module is always smaller than the Order.

• Whenever the Order is smaller than the largest numerical

 structure available in the set of numerical structures used

 to construct a verbal numerical expression, the Factor is

 smaller than the Order.

• Except for the representation of zero, either the Factor or

 the Module component is always greater than zero.

• Order components are always greater than 1.

The above properties may be used to determine if a given

expression is a valid verbal numerical expression.

Verbal Numerical Expressions and Verbal
Numerals

In the previous section it was shown that the name of a

number is actually the representation of a verbal numerical

expression. Another way to represent a verbal numerical

expression is by assigning symbols to the numerical structures

(i.e.: “H,” “T” and “M” for Hundred, Thousand and Million,

respectively) and combining them with the small numbers

used in the verbal numerical expression in a mode similar to

the way the name of the number is constructed orally.

As an illustration example, the application of the verbal

expression algorithm to the number 35,178,971 will yield the

following intermediate and fi nal verbal numerical expressions:

 35 x 1,000,000 + 178,971

 35 x 1,000,000 + 178 x 1,000 + 971

 35 x 1,000,000 + (1 x 100 + 78) x 1,000 + 971

 35 x 1,000,000 + (1 x 100 + 78) x 1,000 + 9 x 100 + 71.

By replacing the numerical structures with the corresponding

symbols and removing the parentheses and arithmetic

operators, these expressions can also be expressed

symbolically as follows:

 35M178971

 35M178T971

 35M1H78T971

 35M1H78T9H71.

Since a verbal numerical expression represents a number, the

symbolic representation of a verbal numerical expression will

also represent a number. In general, we use the word numeral

to mean the symbolic representation of a number; therefore

the symbolic representation of a verbal numerical expression

in the way described above is a numeral. For the purpose of

this analysis, this symbolic representation of a number will be

5

LANGUAGE AND NUMERICAL STRUCTURES

called “verbal numeral.”

Some languages, like Spanish, omit the pronunciation of the

Factor when it is equal to 1. As an illustration example, the

number “One thousand one hundred” (1T1H) is expressed in “One thousand one hundred” (1T1H) is expressed in “One thousand one hundred”

Spanish as “Mil cien” (TH). This is a convenient feature to be “Mil cien” (TH). This is a convenient feature to be “Mil cien”

included in a verbal numeral because it reduces the number of

components required by some verbal numerals, for example,

the number illustrated above could also be represented as:

35MH78T971.

It is interesting to notice that in Japanese and Chinese, digits

and numerical structures have single Kanji symbols, and a

number is already written as a verbal numeral instead of a

sequence of digits. For example the number 1,105 with verbal

numeral TH5 is pronounced in Japanese as sen-hyaku-go (for sen-hyaku-go (for sen-hyaku-go

thousand-hundred-fi ve), and in Kanji characters is written as:

corresponding to “sen,” “hyaku” and “go.”

Conversion of Numbers into Verbal Numerals

Since a verbal numeral is the symbolic representation of a

verbal numerical expression, the procedure used to obtain the

verbal numeral of a number should be similar to the verbal

expression algorithm.

The following is an algorithm that can be used to convert a

number into a verbal numeral:

(1) Find the Order, Factor and Module of the number.

(2) If the Factor is a large number, apply recursively

 steps (1) to (4) to obtain the verbal numeral of the

 Factor, otherwise use the decimal representation of the

 Factor as the verbal numeral of the Factor.

(3) If the Module is a large number, apply recursively

 steps (1) to (4) to obtain the verbal numeral of the

 Module, otherwise use the decimal representation of

 the Module as its verbal numeral representation.

(4) Obtain the verbal numeral of the number by appending

 to the verbal numeral of the Factor the symbol of

 the Order and the verbal numeral of the Module, in

 that order.

Due to the similarity of steps (2) and (3), the procedure can

be simplifi ed to use only one single call to the recursive

procedure by subtracting the product Factor X Order from the Factor X Order from the Factor X Order

number and then repeating the procedures until the result

is zero. A fl ow-chart showing the simplifi ed version of this

algorithm is shown in Fig. 1.

There are many applications where it is desirable to build the

full-word name of a number. Examples of these applications

are programs and routines used to print the words for dollar

amount in a check. A procedure can easily be developed

where the number is converted into a verbal numeral by

using the algorithm described in this section, and then the

verbal numeral can be scanned from left to right replacing

the contiguous groups of digits with the name of the small

number that they represent, and replacing the numerical

structure symbols with their names.

Conversion of Verbal Numerals into Numbers

The verbal expression algorithm can also be used to develop

an algorithm to obtain the decimal value of a number that is

represented by a verbal numeral. Basically, this procedure is

similar to the verbal expression algorithm, except that this time

the expression components are actually computed and added

to the number, and the Order is extracted directly from the

verbal numeral rather than computed from the number. This

recursive algorithm may be summarized as follows:

(1) Find the Order symbol of the verbal numeral by

 locating the symbol of the largest numerical structure

 contained in the verbal numeral; if found, the Order

 is the absolute value of the Order symbol; otherwise the

 Order is 1.

(2) Get the value of the Factor by using the string segment

 of the verbal numeral located at the left side of the

 Order symbol; if no Order symbol is found assign the

 value 1 to the Order and use the value represented by

 the digits in the string segment as the value of the

 Factor. If no string segment is available, the value of

6

LANGUAGE AND NUMERICAL STRUCTURES

 the Factor is 1. If the string segment contains at least

 one numerical structure symbol, apply recursively steps

 (1) to (4) on this string segment to obtain the value of

 the Factor.

(3) Get the value of the Module by using the string

 segment of the verbal numeral located at the right side

 of the Order symbol; if no Order symbol is found, use

 the value represented by the digits in the string

 segment as the value of the Module; if no string

 segment is available, assign the number zero to the

 Module. If the string segment contains at least one

 numerical structure symbol, apply recursively steps

 (1) to (4) on the string segment to obtain the value of

 the Module.

(4) Determine the value of the number by applying the

 following expression: Factor x Order + Module.

Since the logic to convert the Module is similar to the one

used to convert the Factor, it is possible to simplify the logic to

use only one single call to the recursive procedure as shown in

the fl ow chart of Fig. 2.

The algorithm shown in this section can be implemented in

the logic of a numerical data-entry device such as a calculator,

a computer keyboard or a touch sensitive device in order

to accept numbers entered as verbal numerals. A similar

procedure can also be adapted to enter numbers in voice and

gesture recognition systems.

Support for Combined Numerical Structures

As mentioned before, in most Western languages the only

common numerical structures are “hundred,” “thousand”

and “million.” This can make it impractical to include keys for

Fig. 1 – Conversion from Decimal Number to Verbal Numeral Fig. 2 – Conversion from Verbal Numeral to Decimal Number

7

Get Verbal
Numeral for N

Start

While
N > 0

Find Order 

Factor = integer (N/Order)

Factor >= 100

Order > 1

Append symbol of Order to Verbal Numeral

N = N - Factor x Order

Return

Get Verbal Numeral
for Factor.

Append Factor
to Verbal Numeral

No

No

Yes

Yes

Start

N = 0

Convert Verbal Numeral
in string segment L1, L3 to number N

Verbal Numeral string

Factor Order Module

While
L1 <= L3

Find the Order for segment L1, L3
L2 = Order location.

No

L1 L2 L3

Yes

No

Yes

Convert Verbal Numeral in
string segment L1, L2-1 to Factor

N = N + Factor x Order

L1 = L2 + 1

Return
N

Order > 1

Factor = 1

Convert digits
to Factor

L1 < L2

LANGUAGE AND NUMERICAL STRUCTURES

larger numerical structures such as “billion” or “trillion” in a

keyboard. In these situations, the algorithms described above

can easily be modifi ed to accept or recognize “combined

numerical structures.” For this to work, a combined numerical numerical structures.” For this to work, a combined numerical numerical structures.”

structure must be defi ned as a sequence of one or more

consecutive numerical structures where the value of each

numerical structure is equal to or larger than the value of its

preceding numerical structure.

As examples of applying this concept, the following numerical

structures may be defi ned by using the “hundred (H),”

“thousand (T)” and “million (M)” numerical structures:

HH Japanese “man” (10,000)

HT Japanese “oku” (10^8)

TM American “billion” or French “milliard” (10^9)

MM British “Billion” or Japanese “chou” (10^12).

As another example, the British version of the number

“two billion three hundred million” may be entered with the

following verbal numeral: 2MM3HM.

The algorithm should identify these types of sequences within

the verbal numeral and consider them as single numerical

structures.

Validation Rules

As mentioned before, the oral expression of a number must

follow certain rules, for example, the number “Four hundred

and thirty seven hundred” does not exist (although the words

would be intended to represent the number 43700.) By the

same token not every combination of digits and numerical

structure symbols should yield a valid verbal numeral. The

following are the rules that can be used to validate a verbal

numeral:

• The Factor or the Module segment of a verbal numeral

 cannot have a leading zero.

• The Factor of a verbal numeral cannot represent a

 number larger than the Order of the verbal numeral.

• The Module of a verbal numeral cannot represent a

 number equal or larger than the Order of the verbal

 numeral.

The following are examples on of invalid verbal numerals:

 4H37H (Module 37H is larger than Order 100)

 437H (Factor 437 is larger than Order 100)

 3T025 (Module 025 has a leading zero)

 3T1000 (Module 1000 is equal to Order 1000)

 4TTHM (Module HM is larger than Order TT).

These rules can easily be implemented as part of the algorithm

described in Fig. 1 in order to validate a verbal numeral entered

by a user in a device designed to accept verbal numerals as a

way to enter numeric quantities.

Advantages of Verbal Numerals

One obvious advantage of verbal numerals is its consistency

with the way the human mind conceives and orally expresses

the number. This allows for a more natural interface when

entering numbers that can be used in many input devices from

keyboards to voice recognition systems. Verbal numerals may

also reduce the number of data entry errors as the operator

would not have to translate an orally expressed number to

its decimal sequence.

By using combined numerical structures, verbal numerals

can be used to represent very large numbers, even if special

symbols have not been assigned for very large numerical

structures as in the following example:

 245,000,000,072 245MM72

In many instances verbal numerals require fewer number of

symbols than decimal numbers. Here are several examples:

 3,000,005 3M5

 350,000 3H50T or 350T

 2,000,305 2M3H5 or 2M305

 1,001,000 1M1T or MT

 1,000,000,000 1TM or TM

 1,000,000,100 1TM1H or TMH

A large number usually may be represented by several

alternative verbal numerals; this provides fl exibility not

available with decimal numbers. For example, following

8

LANGUAGE AND NUMERICAL STRUCTURES

Notice that while the decimal number changes substantially

in each intermediate step of the number, the verbal numeral

does not change except for the addition of the new

component to the previous numeral.

Verbal numerals can easily be adapted as input means in

electronic devices, with the additional advantage that they can

coexist with the traditional number-entry input means.

Conclusions

The way we write decimal numbers is not the only way to

represent numbers in decimal mode. Numbers can also be

represented as verbal numerals that, in addition to having the

fl exibility to represent the same number in different alternative

ways, are consistent with the way numbers are conceived and

expressed verbally.

The technological limitations that caused decimal numbers

to be entered in mechanical devices as a sequence of digits

are a thing of the past. We are no longer forced to convert a

number into this cold sequence of digits before entering it; the

device can do that for us. Verbal numerals can now be used

to increase the ergonomics of number entry procedures in

electronic devices, without having to replace the usage of the

traditional decimal numbers.

representations of the number 205,001,048 are equally valid:

 2H5M1T48

 2H5MT48

 205MT48

 205M2048

Another advantage of verbal numerals is its capability to grow

gradually as the number is being pronounced orally. This

property does not exist in the corresponding decimal numbers.

For example, in the construction of the number “Five Million

Three Hundred Thousand Six” the following intermediate Three Hundred Thousand Six” the following intermediate Three Hundred Thousand Six”

numerals are involved:

 Number Decimal Verbal

 Name Number Numeral

 Five... 5 5

 million... 5,000,000 5M

 three... 5,000,003 5M3

 hundred... 5,000,300 5M3H

 thousand... 5,300,000 5M3HT

 six 5,300,006 5M3HT6

9Copyright © 2004 X-Number. All rights reserved

James Redin is a senior systems analyst at Keane, Inc. In his free time, he likes to write about the history of calculators, and invent new ways to enter

numbers in electronic devices. He is also the holder of U.S. Patent 5,623,433 that describes the procedures to convert decimal numerals into verbal

numerals and the other way around. Demonstration keyboards and application examples of the concepts provided in this article can be found at

http://www.xnumber.com James Redin can be contacted at jredin@xnumber.com

Fig. 3 – Possible implementation of verbal numerals on a keyboard

